Thursday, September 8, 2016

Cefoxitin





Dosage Form: injection - powder, for solution
Cefoxitin FOR INJECTION, USP

Rx only


To reduce the development of drug-resistant bacteria and maintain the effectiveness of Cefoxitin for Injection and other antibacterial drugs, Cefoxitin for Injection should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria.



Cefoxitin Description


Cefoxitin for Injection, USP contains Cefoxitin sodium a semi-synthetic, broad-spectrum cephalosporin antibiotic for parenteral administration. It is derived from cephalosporin C, which is produced by Cephalosporium Acremonium. It is the sodium salt of 3-(hydroxymethyl)-7-methoxy-8-oxo-7-[2-(2-thienyl)acetamido]-5-thia-1-azabicyclo [4.2.0] oct-2-ene-2-carboxylate carbamate (ester). The molecular formula is C16H16N3NaO7S2, and the structural formula is:



Cefoxitin for Injection, USP contains approximately 53.8 mg (2.3 milliequivalents) of sodium per gram of Cefoxitin activity. Solutions of Cefoxitin for Injection, USP range from colorless to light amber in color. The pH of freshly constituted solutions usually ranges from 4.2 to 7.0.


Each conventional vial contains sterile Cefoxitin sodium, USP equivalent to 1 or 2 g Cefoxitin.



Cefoxitin - Clinical Pharmacology



Clinical Pharmacology


Following an intravenous dose of 1 gram, serum concentrations were 110 mcg/mL at 5 minutes, declining to less than 1 mcg/mL at 4 hours. The half-life after an intravenous dose is 41 to 59 minutes. Approximately 85% of Cefoxitin is excreted unchanged by the kidneys over a 6-hour period, resulting in high urinary concentrations. Probenecid slows tubular excretion and produces higher serum levels and increases the duration of measurable serum concentrations.


Cefoxitin passes into pleural and joint fluids and is detectable in antibacterial concentrations in bile.


In a published study of geriatric patients ranging in age from 64 to 88 years with normal renal function for their age (creatinine clearance ranging from 31.5 to 174.0 mL/min), the half-life for Cefoxitin ranged from 51 to 90 minutes, resulting in higher plasma concentrations than in younger adults. These changes were attributed to decreased renal function associated with the aging process.



Microbiology


The bactericidal action of Cefoxitin results from inhibition of cell wall synthesis. Cefoxitin has in vitro activity against a wide range of gram-positive and gram-negative organisms. The methoxy group in the 7α position provides Cefoxitin with a high degree of stability in the presence of beta-lactamases, both penicillinases and cephalosporinases, of gram-negative bacteria.


Cefoxitin has been shown to be active against most strains of the following microorganisms, both in vitro and in clinical infections as described in the INDICATIONS AND USAGE section.


Aerobic gram-positive microorganisms
 

Staphylococcus aureusa  (including penicillinase-producing strains)

 

Staphylococcus epidermidisa

 

Streptococcus agalactiae

 

Streptococcus pneumoniae

 

Streptococcus pyogenes

 

a Staphylococci resistant to methicillin/oxacillin should be considered resistant to Cefoxitin.

 

Most strains of enterococci, e.g. Enterococcus faecalis, are resistant.

Aerobic gram-negative microorganisms
 

Escherichia coli

 

Haemophilus influenzae

 

Klebsiella spp. (including K. pneumoniae)

 

Morganella morganii

 

Neisseria gonorrhoeae (including penicillinase-producing strains)

 

Proteus mirabilis

 

Proteus vulgaris

 

Providencia spp. (including Providencia rettgeri)

Anaerobic gram-positive microorganisms
 

Clostridium spp.

 

Peptococcus niger

 

Peptostreptococcus spp.

Anaerobic gram-negative microorganisms
 

Bacteroides distasonis

 

Bacteroides fragilis

 

Bacteroides ovatus

 

Bacteroides thetaiotaomicron

 

Bacteroides spp.

The following in vitro data are available, but their clinical significance is unknown.


Cefoxitin exhibits in vitro minimum inhibitory concentrations (MIC’s) of 8 mcg/mL or less for aerobic microorganisms and 16 mcg/mL or less for anaerobic microorganisms against most (≥90%) strains of the following microorganisms; however, the safety and effectiveness of Cefoxitin in treating clinical infections due to these microorganisms have not been established in adequate and well-controlled clinical trials.


Aerobic gram-negative microorganisms
 

Eikenella corrodens (non-β-lactamase producers)

 

Klebsiella oxytoca

Anaerobic gram-positive microorganisms
 

Clostridium perfringens

Anaerobic gram-negative microorganisms
 

Prevotella bivia (formerly Bacteroides bivius)

Cefoxitin is inactive in vitro against most strains of Pseudomonas aeruginosa and enterococci and many strains of Enterobacter cloacae.



Susceptibility Tests


Dilution Techniques:

Quantitative methods are used to determine antimicrobial minimum inhibitory concentrations (MIC’s). These MIC’s provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MIC’s should be determined using a standardized procedure. Standardized procedures are based on a dilution method1 (broth or agar) or equivalent with standardized inoculum concentrations and standardized concentrations of Cefoxitin powder. The MIC values should be interpreted according to the following criteria:


For testing aerobic microorganismsa,b,c other than Neisseria gonorrhoeae:











MIC (mcg/mL)Interpretation
≤ 8Susceptible (S)
16Intermediate (I)
≥ 32Resistant (R)

 


a Staphylococci exhibiting resistance to methicillin/oxacillin should be reported as also resistant to Cefoxitin despite apparent in vitro susceptibility.


b For testing Haemophilus influenzae these interpretative criteria applicable only to tests performed by broth microdilution method using Haemophilus Test Medium (HTM)1.


c For testing streptococci these interpretative criteria applicable only to tests performed by broth microdilution method using cation-adjusted Mueller-Hinton broth with 2 to 5% lysed horse blood1.


For testing Neisseria gonorrhoeaed:











MIC (mcg/mL)Interpretation
≤ 2Susceptible (S)
4Intermediate (I)
≥ 8Resistant (R)

 


d Interpretative criteria applicable only to tests performed by agar dilution method using GC agar base with 1% defined growth supplement and incubated in 5% CO2 1.


A report of “Susceptible” indicates that the pathogen is likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable. A report of “Intermediate” indicates that the result should be considered equivocal, and, if the microorganism is not fully susceptible to alternative, clinically feasible drugs, the test should be repeated. This category implies possible clinical applicability in body sites where the drug is physiologically concentrated or in situations where high dosage of drug can be used. This category also provides a buffer zone which prevents small uncontrolled technical factors from causing major discrepancies in interpretation. A report of “Resistant” indicates that the pathogen is not likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable; other therapy should be selected.


Standardized susceptibility test procedures require the use of laboratory control microorganisms to control the technical aspects of the laboratory procedures. Standard Cefoxitin powder should provide the following MIC values:















MicroorganismMIC (mcg/mL)
Escherichia coliATCC 259221-4
Neisseria gonorrhoeaeaATCC 492260.5-2
Staphylococcus aureusATCC 292131-4

 


a Interpretative criteria applicable only to tests performed by agar dilution method using GC agar base with 1% defined growth supplement and incubated in 5% CO2.1


Diffusion Techniques:

Quantitative methods that require measurement of zone diameters also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. One such standardized procedure2 requires the use of standardized inoculum concentrations. This procedure uses paper disks impregnated with 30 mcg Cefoxitin to test the susceptibility of microorganisms to Cefoxitin.


Reports from the laboratory providing results of the standard single-disk susceptibility test with a 30 mcg Cefoxitin disk should be interpreted according to the following criteria:


For testing aerobic microorganismsa,b,c other than Neisseria gonorrhoeae:











Zone Diameter (mm)Interpretation
≥ 18Susceptible (S)
15-17Intermediate (I)
≤ 14Resistant (R)

 


a Staphylococci exhibiting resistance to methicillin/oxacillin should be reported as also resistant to Cefoxitin despite apparent in vitro susceptibility.


b For testing Haemophilus influenzae these interpretative criteria applicable only to tests performed by disk diffusion method using Haemophilus Test Medium (HTM)1.


c For testing streptococci these interpretative criteria applicable only to tests performed by disk diffusion method using Mueller-Hinton agar with 5% defibrinated sheep blood and incubated in 5% CO2 2.


For testing Neisseria gonorrhoeaed:











Zone Diameter (mm)Interpretation
≥ 28Susceptible (S)
24-27Intermediate (I)
≤ 23Resistant (R)

 


d Interpretative criteria applicable only to tests performed by disk diffusion method using GC agar base with 1% defined growth supplement and incubated in 5% CO2 2.


Interpretation should be as stated above for results using dilution techniques.


Interpretation involves correlation of the diameter obtained in the disk test with the MIC for Cefoxitin.


As with standardized dilution techniques, diffusion methods require the use of laboratory control microorganisms that are used to control the technical aspects of the laboratory procedures. For the diffusion technique, the 30 mcg Cefoxitin disk should provide the following zone diameters in these laboratory test quality control strains:















MicroorganismZone Diameter (mm)
Escherichia coliATCC 2592223-29
Neisseria gonorrhoeaeaATCC 4922633-41
Staphylococcus aureusATCC 2592323-29

 


a Interpretative criteria applicable only to tests performed by disk diffusion method using GC agar base with 1% defined growth supplement and incubated in 5% CO2 2.


Anaerobic Techniques:

For anaerobic bacteria, the susceptibility to Cefoxitin as MIC’s can be determined by standardized test methods3. The MIC values obtained should be interpreted according to the following criteria:











MIC (mcg/mL)Interpretation
≤ 16Susceptible (S)
32Intermediate (I)
≥ 64Resistant (R)

 


Interpretation is identical to that stated above for results using dilution techniques.


As with other susceptibility techniques, the use of laboratory control microorganisms is required to control the technical aspects of the laboratory standardized procedures. Standard Cefoxitin powder should provide the following MIC values:


Using either an Agar Dilution Methoda or Using a Brothb Microdilution Method:












MicroorganismMIC (mcg/mL)
Bacteroides fragilisATCC 252854-16
Bacteroides thetaiotaomicronATCC 297418-32

 


a Range applicable only to tests performed using either Brucella blood or Wilkins-Chalgren agar.


b Range applicable only to tests performed in the broth formulation of Wilkins-Chalgren agar3.



Indications and Usage for Cefoxitin



Treatment


Cefoxitin for Injection is indicated for the treatment of serious infections caused by susceptible strains of the designated microorganisms in the diseases listed below.


(1)Lower respiratory tract infections, including pneumonia and lung abscess, caused by Streptococcus pneumoniae, other streptococci (excluding enterococci, e.g., Enterococcus faecalis [formerly Streptococcus faecalis]), Staphylococcus aureus (including penicillinase-producing strains), Escherichia coli, Klebsiella species, Haemophilus influenzae, and Bacteroides species.


(2) Urinary tract infections caused by Escherichia coli, Klebsiella species, Proteus mirabilis, Morganella morganii, Proteus vulgaris and Providencia species (including P. rettgeri).


(3) Intra-abdominal infections, including peritonitis and intra-abdominal abscess, caused by Escherichia coli, Klebsiella species, Bacteroides species including Bacteroides fragilis, and Clostridium species.


(4) Gynecological infections, including endometritis, pelvic cellulitis, and pelvic inflammatory disease caused by Escherichia coli, Neisseria gonorrhoeae (including penicillinase-producing strains), Bacteroides species including B. fragilis, Clostridium species, Peptococcus niger, Peptostreptococcus species, and Streptococcus agalactiae. Cefoxitin for Injection, like cephalosporins, has no activity against Chlamydia trachomatis. Therefore, when Cefoxitin for Injection is used in the treatment of patients with pelvic inflammatory disease and C. trachomatis is one of the suspected pathogens, appropriate anti-chlamydial coverage should be added.


(5) Septicemia caused by Streptococcus pneumoniae, Staphylococcus aureus (including penicillinase-producing strains), Escherichia coli, Klebsiella species, and Bacteroides species including B. fragilis.


(6) Bone and joint infections caused by Staphylococcus aureus (including penicillinase-producing strains).


(7) Skin and skin structure infections caused by Staphylococcus aureus (including penicillinase-producing strains), Staphylococcus epidermidis, Streptococcus pyogenes and other streptococci (excluding enterococci e.g., Enterococcus faecalis [formerly Streptococcus faecalis]), Escherichia coli, Proteus mirabilis, Klebsiella species, Bacteroides species including B. fragilis, Clostridium species, Peptococcus niger, and Peptostreptococcus species.


Appropriate culture and susceptibility studies should be performed to determine the susceptibility of the causative organisms to Cefoxitin for Injection. Therapy may be started while awaiting the results of these studies.


In randomized comparative studies, Cefoxitin for Injection and cephalothin were comparably safe and effective in the management of infections caused by gram-positive cocci and gram-negative rods susceptible to the cephalosporins. Cefoxitin for Injection has a high degree of stability in the presence of bacterial beta-lactamases, both penicillinases and cephalosporinases.


Many infections caused by aerobic and anaerobic gram-negative bacteria resistant to some cephalosporins respond to Cefoxitin for Injection. Similarly, many infections caused by aerobic and anaerobic bacteria resistant to some penicillin antibiotics (ampicillin, carbenicillin, penicillin G) respond to treatment with Cefoxitin for Injection. Many infections caused by mixtures of susceptible aerobic and anaerobic bacteria respond to treatment with Cefoxitin for Injection.



Prevention


Cefoxitin for Injection is indicated for the prophylaxis of infection in patients undergoing uncontaminated gastrointestinal surgery, vaginal hysterectomy, abdominal hysterectomy, or cesarean section.


If there are signs of infection, specimens for culture should be obtained for identification of the causative organism so that appropriate treatment may be instituted.


To reduce the development of drug-resistant bacteria and maintain the effectiveness of Cefoxitin for Injection and other antibacterial drugs, Cefoxitin for Injection should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information is available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.



Contraindications


Cefoxitin for Injection is contraindicated in patients who have shown hypersensitivity to Cefoxitin and the cephalosporin group of antibiotics.



Warnings


BEFORE THERAPY WITH Cefoxitin FOR INJECTION IS INSTITUTED, CAREFUL INQUIRY SHOULD BE MADE TO DETERMINE WHETHER THE PATIENT HAS HAD PREVIOUS HYPERSENSITIVITY REACTIONS TO Cefoxitin, CEPHALOSPORINS, PENICILLINS, OR OTHER DRUGS. THIS PRODUCT SHOULD BE GIVEN WITH CAUTION TO PENICILLIN-SENSITIVE PATIENTS. ANTIBIOTICS SHOULD BE ADMINISTERED WITH CAUTION TO ANY PATIENT WHO HAS DEMONSTRATED SOME FORM OF ALLERGY, PARTICULARLY TO DRUGS. IF AN ALLERGIC REACTION TO Cefoxitin FOR INJECTION OCCURS, DISCONTINUE THE DRUG. SERIOUS HYPERSENSITIVITY REACTIONS MAY REQUIRE EPINEPHRINE AND OTHER EMERGENCY MEASURES.


Clostridium difficile associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including Cefoxitin, and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C. difficile.


C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing strains of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents.


If CDAD is suspected or confirmed, ongoing antibiotic use not directed against C. difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of C. difficile, and surgical evaluation should be instituted as clinically indicated.



Precautions



General


The total daily dose should be reduced when Cefoxitin for Injection is administered to patients with transient or persistent reduction of urinary output due to renal insufficiency (see DOSAGE AND ADMINISTRATION), because high and prolonged serum antibiotic concentrations can occur in such individuals from usual doses.


Antibiotics (including cephalosporins) should be prescribed with caution in individuals with a history of gastrointestinal disease, particularly colitis.


As with other antibiotics, prolonged use of Cefoxitin for Injection may result in overgrowth of nonsusceptible organisms. Repeated evaluation of the patient's condition is essential. If superinfection occurs during therapy, appropriate measures should be taken.


Prescribing Cefoxitin for Injection in the absence of a proven or strongly suspected bacterial infection or a prophylactic indication is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant-bacteria.



Information for Patients


Patients should be counseled that antibacterial drugs including Cefoxitin for Injection should only be used to treat bacterial infections. They do not treat viral infections (e.g., the common cold). When Cefoxitin for Injection is prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may (1) decrease the effectiveness of the immediate treatment and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by Cefoxitin for Injection or other antibacterial drugs in the future.


Diarrhea is a common problem caused by antibiotics, which usually ends when the antibiotic is discontinued. Sometimes after starting the treatment with antibiotics, patients can develop watery and bloody stools (with or without stomach cramps and fever) even as late as two or more months after having taken the last dose of the antibiotic. If this occurs, patients should contact their physician as soon as possible.



Laboratory Tests


As with any potent antibacterial agent, periodic assessment of organ system functions, including renal, hepatic, and hematopoietic, is advisable during prolonged therapy.



Interactions


Drug Interactions

Increased nephrotoxicity has been reported following concomitant administration of cephalosporins and aminoglycoside antibiotics.


Drug/Laboratory Test Interactions

As with cephalothin, high concentrations of Cefoxitin (> 100 mcg/mL) may interfere with measurement of serum and urine creatinine levels by the Jaffé reaction, and produce false increases of modest degree in the levels of creatinine reported. Serum samples from patients treated with Cefoxitin should not be analyzed for creatinine if withdrawn within 2 hours of drug administration.


High concentrations of Cefoxitin in the urine may interfere with measurement of urinary 17-hydroxy-corticosteroids by the Porter-Silber reaction, and produce false increases of modest degree in the levels reported.


A false-positive reaction for glucose in the urine may occur. This has been observed with CLINITEST† reagent tablets.



Carcinogenesis, Mutagenesis, Impairment of Fertility


Long-term studies in animals have not been performed with Cefoxitin to evaluate carcinogenic or mutagenic potential. Studies in rats treated intravenously with 400 mg/kg of Cefoxitin (approximately three times the maximum recommended human dose) revealed no effects on fertility or mating ability.



Pregnancy


Pregnancy Category B.

Reproduction studies performed in rats and mice at parenteral doses of approximately one to seven and one-half times the maximum recommended human dose did not reveal teratogenic or fetal toxic effects, although a slight decrease in fetal weight was observed.


There are, however, no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if clearly needed.


In the rabbit, Cefoxitin was associated with a high incidence of abortion and maternal death. This was not considered to be a teratogenic effect but an expected consequence of the rabbit's unusual sensitivity to antibiotic-induced changes in the population of the microflora of the intestine.



Nursing Mothers


Cefoxitin for Injection is excreted in human milk in low concentrations. Caution should be exercised when Cefoxitin for Injection is administered to a nursing woman.



Pediatric Use


Safety and efficacy in pediatric patients from birth to three months of age have not yet been established. In pediatric patients three months of age and older, higher doses of Cefoxitin for Injection have been associated with an increased incidence of eosinophilia and elevated SGOT.



Geriatric Use


Of the 1,775 subjects who received Cefoxitin in clinical studies, 424 (24%) were 65 and over, while 124 (7%) were 75 and over. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out (see CLINICAL PHARMACOLOGY).


This drug is known to be substantially excreted by the kidney, and the risk of toxic reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function (see DOSAGE AND ADMINISTRATION and PRECAUTIONS).



Adverse Reactions


Cefoxitin for Injection is generally well tolerated. The most common adverse reactions have been local reactions following intravenous injection. Other adverse reactions have been encountered infrequently.



Local Reactions


Thrombophlebitis has occurred with intravenous administration.



Allergic Reactions


Rash (including exfoliative dermatitis and toxic epidermal necrolysis), urticaria, flushing, pruritus, eosinophilia, fever, dyspnea, and other allergic reactions including anaphylaxis, interstitial nephritis and angioedema have been noted.



Cardiovascular


Hypotension.



Gastrointestinal


Diarrhea, including documented pseudomembranous colitis which can appear during or after antibiotic treatment. Nausea and vomiting have been reported rarely.



Neuromuscular


Possible exacerbation of myasthenia gravis



Blood


Eosinophilia, leukopenia including granulocytopenia, neutropenia, anemia, including hemolytic anemia, thrombocytopenia, and bone marrow depression. A positive direct Coombs test may develop in some individuals, especially those with azotemia.



Liver Function


Transient elevations in SGOT, SGPT, serum LDH, and serum alkaline phosphatase; and jaundice have been reported.



Renal Function


Elevations in serum creatinine and/or blood urea nitrogen levels have been observed. As with the cephalosporins, acute renal failure has been reported rarely. The role of Cefoxitin for Injection in changes in renal function tests is difficult to assess, since factors predisposing to prerenal azotemia or to impaired renal function usually have been present.


In addition to the adverse reactions listed above which have been observed in patients treated with Cefoxitin for Injection, the following adverse reactions and altered laboratory test results have been reported for cephalosporin class antibiotics:


Urticaria, erythema multiforme, Stevens-Johnson syndrome, serum sickness-like reactions, abdominal pain, colitis, renal dysfunction, toxic nephropathy, false-positive test for urinary glucose, hepatic dysfunction including cholestasis, elevated bilirubin, aplastic anemia, hemorrhage, prolonged prothrombin time, pancytopenia, agranulocytosis, superinfection, vaginitis including vaginal candidiasis.


Several cephalosporins have been implicated in triggering seizures, particularly in patients with renal impairment when the dosage was not reduced. (See DOSAGE AND ADMINISTRATION.) If seizures associated with drug therapy occur, the drug should be discontinued. Anticonvulsant therapy can be given if clinically indicated.



Overdosage


The acute intravenous LD50 in the adult female mouse and rabbit was about 8 g/kg and greater than 1 g/kg, respectively. The acute intraperitoneal LD50 in the adult rat was greater than 10 g/kg.



Cefoxitin Dosage and Administration



Treatment


Adults

The usual adult dosage range is 1 gram to 2 grams every six to eight hours. Dosage should be determined by susceptibility of the causative organisms, severity of infection, and the condition of the patient (see Table 1 for dosage guidelines).


If C. trachomatis is a suspected pathogen, appropriate anti-chlamydial coverage should be added, because Cefoxitin sodium has no activity against this organism.


Cefoxitin for Injection may be used in patients with reduced renal function with the following dosage adjustments:


In adults with renal insufficiency, an initial loading dose of 1 gram to 2 grams may be given. After a loading dose, the recommendations for maintenance dosage (Table 2) may be used as a guide.


When only the serum creatinine level is available, the following formula (based on sex, weight, and age of the patient) may be used to convert this value into creatinine clearance. The serum creatinine should represent a steady state of renal function.


Males:


Females: 0.85 x above value


In patients undergoing hemodialysis, the loading dose of 1 to 2 grams should be given after each hemodialysis, and the maintenance dose should be given as indicated in Table 2.


Antibiotic therapy for group A beta-hemolytic streptococcal infections should be maintained for at least 10 days to guard against the risk of rheumatic fever or glomerulonephritis. In staphylococcal and other infections involving a collection of pus, surgical drainage should be carried out where indicated.


Pediatric Patients

The recommended dosage in pediatric patients three months of age and older is 80 to 160 mg/kg of body weight per day divided into four to six equal doses. The higher dosages should be used for more severe or serious infections. The total daily dosage should not exceed 12 grams.


At this time no recommendation is made for pediatric patients from birth to three months of age (see PRECAUTIONS).


In pediatric patients with renal insufficiency, the dosage and frequency of dosage should be modified consistent with the recommendations for adults (see Table 2).



Prevention


Effective prophylactic use depends on the time of administration. Cefoxitin for Injection usually should be given one-half to one hour before the operation, which is sufficient time to achieve effective levels in the wound during the procedure. Prophylactic administration should usually be stopped within 24 hours since continuing administration of any antibiotic increases the possibility of adverse reactions but, in the majority of surgical procedures, does not reduce the incidence of subsequent infection.


For prophylactic use in uncontaminated gastrointestinal surgery, vaginal hysterectomy, or abdominal hysterectomy, the following doses are recommended:


Adults:

2 grams administered intravenously just prior to surgery (approximately one-half to one hour before the initial incision) followed by 2 grams every 6 hours after the first dose for no more than 24 hours.


Pediatric Patients (3 months and older):

30 to 40 mg/kg doses may be given at the times designated above.


Cesarean section patients:

For patients undergoing cesarean section, either a single 2 gram dose administered intravenously as soon as the umbilical cord is clamped OR a 3-dose regimen consisting of 2 grams given intravenously as soon as the umbilical cord is clamped followed by 2 grams 4 and 8 hours after the initial dose is recommended. (See CLINICAL STUDIES.)


Table 1 - Guidelines for Dosage of Cefoxitin for Injection















Type of InfectionDaily DosageFrequency and Route
Uncomplicated forms* of infections such as pneumonia, urinary tract infection, cutaneous infection3-4 grams1 gram every 6-8 hours IV
Moderately severe or severe infections6-8 grams

1 gram every 4 hours


or


2 grams every 6-8 hours IV
Infections commonly needing antibiotics in higher dosage (e.g., gas gangrene)12 grams

2 grams every 4 hours


or


3 grams every 6 hours IV

* Including patients in whom bacteremia is absent or unlikely.


Table 2 - Maintenance Dosage of Cefoxitin for Injection in Adults with Reduced Renal Function











Renal Function

Creatinine


Clearance


(mL/min)

Dose


(grams)
Frequency

Mild impairment


Moderate impairment


Severe impairment


Essentially no function

50-30


29-10


9-5


<5

1-2


1-2


0.5-1


0.5-1

every 8-12 hours


every 12-24 hours


every 12-24 hours


every 24-48 hours

Table 3 - Preparation of Solution for Intravenous Administration











StrengthAmount of Diluent to be Added (mL)**

Approximate


Withdrawable


Volume (mL)

Approximate Average


Concentration


(mg/mL)

1 gram Vial


2 gram Vial

10


10 or 20

10.5


11.1 or 21

95


180 or 95

** Shake to dissolve and let stand until clear.



Preparation of Solution


Table 3 is provided for convenience in constituting Cefoxitin for Injection for intravenous administration.


For Vials

One gram should be constituted with at least 10 mL, and 2 grams with 10 or 20 mL, of Sterile Water for Injection, Bacteriostatic Water for Injection, 0.9 percent Sodium Chloride Injection, or 5 percent Dextrose Injection. These primary solutions may be further diluted in 50 to 1000 mL of the diluents listed under the Vials  portion of the COMPATIBILITY AND STABILITY section.


Benzyl alcohol as a preservative has been associated with toxicity in neonates. While toxicity has not been demonstrated in pediatric patients greater than three months of age, in whom use of Cefoxitin for Injection may be indicated, small pediatric patients in this age range may also be at risk for benzyl alcohol toxicity. Therefore, diluent containing benzyl alcohol should not be used when Cefoxitin for Injection is constituted for administration to pediatric patients in this age range.



Administration


Cefoxitin for Injection may be administered intravenously after constitution.


Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration whenever solution and container permit.


Intravenous Administration

The intravenous route is preferable for patients with bacteremia, bacterial septicemia, or other severe or life-threatening infections, or for patients who may be poor risks because of lowered resistance resulting from such debilitating conditions as malnutrition, trauma, surgery, diabetes, heart failure, or malignancy, particularly if shock is present or impending. For intermittent intravenous administration, a solution containing 1 gram or 2 grams in 10 mL of Sterile Water for Injection can be injected over a period of three to five minutes. Using an infusion system, it may also be given over a longer period of time through the tubing system by which the patient may be receiving other intravenous solutions. However, during infusion of the solution containing Cefoxitin for Injection, it is advisable to temporarily discontinue administration of any other solutions at the same site.


For the administration of higher doses by continuous intravenous infusion, a solution of Cefoxitin for Injection may be added to an intravenous bottle containing 5 percent Dextrose Injection, 0.9 percent Sodium Chloride Injection, or 5 percent Dextrose and 0.9 percent Sodium Chloride Injection. BUTTERFLY†† or scalp vein-type needles are preferred for this type of infusion.


Solutions of Cefoxitin for Injection, like those of most beta-lactam antibiotics, should not be added to aminoglycoside solutions (e.g., gentamicin sulfate, tobramycin sulfate, amikacin sulfate) because of potential interaction. However, Cefoxitin for Injection and aminoglycosides may be administered separately to the same patient.



COMPATIBILITY AND STABILITY:



Vials


Cefoxitin for Injection, as supplied in vials may be constituted to 1 gram/10 mL with Sterile Water for Injection, Bacteriostatic Water for Injection, (see Preparation of Solution), 0.9 percent Sodium Chloride Injection, or 5 percent Dextrose Injection, maintains satisfactory potency for 6 hours at room temperature or for one week under refrigeration (below 5°C).


These primary solutions may be further diluted in 50 to 1000 mL of the following diluents and maintain potency for an additional 18 hours at room temperature or an additional


48 hours under refrigeration:


0.9 percent Sodium Chloride Injection


5 percent or 10 percent Dextrose

No comments:

Post a Comment